By Topic

Real-Time Communication Analysis for On-Chip Networks with Wormhole Switching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zheng Shi ; Univ. of York, York ; Burns, A.

In this paper, we discuss a real-time on-chip communication service with a priority-based wormhole switching policy. A novel off-line schedulability analysis approach is presented. By evaluating diverse inter-relationships among the traffic-flows, this approach can predict the packet network latency based on two quantifiable different delays: direct interference from higher priority traffic-flows and indirect interference from other higher priority traffic-flows. Due to the inevitable existence of parallel interference, we prove that the general problem of determining the exact schedulability of real-time traffic-flow over the on- chip network is NP-hard. However the results presented do form an upper bound. In addition, an error in a previous published scheduling approach is illustrated and remedied. Utilizing this analysis scheme, we can flexibly evaluate at design time the schedulability of a set of traffic-flows with different QoS requirements on a real-time SoC/NoC communication platform.

Published in:

Networks-on-Chip, 2008. NoCS 2008. Second ACM/IEEE International Symposium on

Date of Conference:

7-10 April 2008