System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Pareto-Based Multiobjective Machine Learning: An Overview and Case Studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yaochu Jin ; Honda Res. Inst. Eur., Offenbach ; Sendhoff, B.

Machine learning is inherently a multiobjective task. Traditionally, however, either only one of the objectives is adopted as the cost function or multiple objectives are aggregated to a scalar cost function. This can be mainly attributed to the fact that most conventional learning algorithms can only deal with a scalar cost function. Over the last decade, efforts on solving machine learning problems using the Pareto-based multiobjective optimization methodology have gained increasing impetus, particularly due to the great success of multiobjective optimization using evolutionary algorithms and other population-based stochastic search methods. It has been shown that Pareto-based multiobjective learning approaches are more powerful compared to learning algorithms with a scalar cost function in addressing various topics of machine learning, such as clustering, feature selection, improvement of generalization ability, knowledge extraction, and ensemble generation. One common benefit of the different multiobjective learning approaches is that a deeper insight into the learning problem can be gained by analyzing the Pareto front composed of multiple Pareto-optimal solutions. This paper provides an overview of the existing research on multiobjective machine learning, focusing on supervised learning. In addition, a number of case studies are provided to illustrate the major benefits of the Pareto-based approach to machine learning, e.g., how to identify interpretable models and models that can generalize on unseen data from the obtained Pareto-optimal solutions. Three approaches to Pareto-based multiobjective ensemble generation are compared and discussed in detail. Finally, potentially interesting topics in multiobjective machine learning are suggested.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:38 ,  Issue: 3 )