By Topic

Optical gain and gain suppression of quantum-well lasers with valence band mixing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahn, Doyeol ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana, IL, USA ; Chuang, Shun-Lien

The effects of valence band mixing on the nonlinear gains of quantum-well lasers are studied theoretically for the first time. The analysis is based on the multiband effective-mass theory and the density matrix formalism with intraband relaxation taken into account. The gain and the gain-suppression coefficient of a quantum-well laser are calculated from the complex optical susceptibility obtained by the density matrix formulation with the theoretical dipole moments obtained from the multiband effective-mass theory. The calculated gain spectrum shows that there are differences (both in peak amplitude and spectral shape) between this model with valence band mixing and the conventional parabolic band model. The shape of the gain spectrum calculated by the new model becomes more symmetric due to intraband relaxation together with nonparabolic energy dispersions. Optical intensity in the GaAs active region is estimated by solving rate equations for the stationary states with nonlinear gain suppression

Published in:

Quantum Electronics, IEEE Journal of  (Volume:26 ,  Issue: 1 )