By Topic

Mechanisms of RF Current Collapse in AlGaN–GaN High Electron Mobility Transistors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Faqir, M. ; Dipt. di Ing. dell''Inf., Univ. di Modena e Reggio Emilia, Modena ; Verzellesi, G. ; Chini, A. ; Fantini, F.
more authors

The physical mechanisms underlying RF current- collapse effects in AlGaN-GaN high-electron-mobility transistors are investigated by means of measurements and numerical device simulations. This paper suggests the following conditions: 1) both surface and buffer traps can contribute to RF current collapse through a similar physical mechanism involving capture and emission of electrons tunneling from the gate; 2) surface passivation strongly mitigates RF current collapse by reducing the surface electric field and inhibiting electron injection into traps; 3) for surface-trap densities lower than 9 x 1012 cm-2, surface-potential barriers in the 1-2-eV range can coexist with surface traps having much a shallower energy and, therefore, inducing RF current-collapse effects characterized by relatively short time constants.

Published in:

Device and Materials Reliability, IEEE Transactions on  (Volume:8 ,  Issue: 2 )