By Topic

Distributive High-Rate Space–Frequency Codes Achieving Full Cooperative and Multipath Diversities for Asynchronous Cooperative Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yabo Li ; SiBEAM Inc., Sunnyvale, CA ; Wei Zhang ; Xia, Xiang-Gen

In user-cooperative communications, relay nodes are usually asynchronous. By realizing that the processing in the frequency domain is insensitive to the errors in the time domain, Mei and Shin recently applied the space-time-coded orthogonal frequency-division multiplexing (OFDM) technique to achieve full cooperative diversity for asynchronous cooperative communications, where orthogonal space-time block codes (particularly the Alamouti code) were used for relay nodes. In this paper, we consider asynchronous cooperative communications, and the channels from one node to another node are frequency-selective fading. We propose a high-rate space-frequency coding method and prove that it can achieve both cooperative and multipath diversities. Simulation results are shown to verify the performance of the constructed codes.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 1 )