Cart (Loading....) | Create Account
Close category search window
 

Stochastic Modeling of the Transform-Domain \varepsilon {\rm LMS} Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lobato, E.M. ; Fed. Univ. of Santa Catarina, Florianopolis ; Tobias, O.J. ; Seara, R.

This paper presents a statistical analysis of the transform-domain least-mean-square (TDLMS) algorithm, resulting in a more accurate model than those discussed in the current open literature. The motivation to analyze such an algorithm comes from the fact that the TDLMS presents a higher convergence speed for correlated input signals, as compared with other adaptive algorithms possessing a similar computational complexity. Such a fact makes it a highly competitive alternative to some applications. Approximate analytical models for the first and second moments of the filter weight vector are obtained. The TDLMS algorithm has an orthonormal transformation stage, accomplishing a decomposition of the input signal into distinct frequency bands, in which the interband samples are practically uncorrelated. On the other hand, the intraband samples are correlated; the larger the number of bands, the higher their correlation. The model is then derived taking into account such a correlation, requiring that a high-order hyperelliptic integral be computed. In addition to the proposed model, an approximate procedure for computing high-order hyperelliptic integrals is presented. A regularization parameter is also considered in the model expressions, permitting to assess its impact on the adaptive algorithm behavior. An upper bound for the step-size control parameter is also obtained. Through simulation results, the accuracy of the proposed model is assessed.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 5 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.