Cart (Loading....) | Create Account
Close category search window
 

Diffusion recursive least-squares for distributed estimation over adaptive networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Cattivelli, F.S. ; Univ. of California, Los Angeles ; Lopes, C.G. ; Sayed, A.H.

We study the problem of distributed estimation over adaptive networks where a collection of nodes are required to estimate in a collaborative manner some parameter of interest from their measurements. The centralized solution to the problem uses a fusion center, thus, requiring a large amount of energy for communication. Incremental strategies that obtain the global solution have been proposed, but they require the definition of a cycle through the network. We propose a diffusion recursive least-squares algorithm where nodes need to communicate only with their closest neighbors. The algorithm has no topology constraints, and requires no transmission or inversion of matrices, therefore saving in communications and complexity. We show that the algorithm is stable and analyze its performance comparing it to the centralized global solution. We also show how to select the combination weights optimally.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 5 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.