By Topic

Analysis of fMRI Data With Drift: Modified General Linear Model and Bayesian Estimator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huaien Luo ; Nat. Univ. of Singapore, Singapore ; Puthusserypady, S.

The slowly varying drift poses a major problem in the analysis of functional magnetic resonance imaging (fMRI) data. In this paper, based on the observation that noise in fMRI is long memory fractional noise and the slowly varying drift resides in a subspace spanned only by large scale wavelets, we examine a modified general linear model (GLM) in wavelet domain under Bayesian framework. This modified model estimates the activation parameters at each scale of wavelet decomposition. Then, a model selection criterion based on the results from the modified scheme is proposed to model the drift. Results obtained from simulated as well as real fMRI data show that the proposed Bayesian estimator can accurately capture the noise structure, and hence, result in robust estimation of the parameters in GLM. Besides, the proposed model selection criterion works well and could efficiently remove the drift.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 5 )