Cart (Loading....) | Create Account
Close category search window

Design of a Variable Constraint Hip Mechanism for a Hybrid Neuroprosthesis to Restore Gait After Spinal Cord Injury

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
To, C.S. ; Case Western Reserve Univ., Cleveland ; Kobetic, R. ; Schnellenberger, J.R. ; Audu, M.L.
more authors

A variable constraint hip mechanism (VCHM) has been developed for a hybrid neuroprosthesis system (HNP) to provide postural stability and uninhibited sagittal hip rotation throughout the gait of individuals with paraplegia. This paper describes the design concepts used in the development of the VCHM. The VCHM utilizes a hydraulic system to reciprocally couple the hips or individually lock and/or free a hip to rotate in one or both sagittal directions. Bench testing results show the feasibility of utilizing a portable hydraulic system in controlling hip joint kinematics. The passive resistive torques of the VCHM against user hip rotation at hip angular velocities typical of gait does not exceed 10% of the achievable hip torque generated by functional neuromuscular stimulation of paralyzed muscle. With the state of the VCHM configured to reciprocally couple the hips, the normalized mechanical efficiency of the VCHM was determined to be 0.7. Since each hip will be independently driven by the FNS of muscle, high torque transfer efficiency between the hips is not essential for successful operation of the VCHM. Future work will focus on the development of a sensor-based feedback controller to modulate the hip constraints of the VCHM and validation of the VCHM as part of a HNP for paraplegic individuals implanted with FNS systems.

Published in:

Mechatronics, IEEE/ASME Transactions on  (Volume:13 ,  Issue: 2 )

Date of Publication:

April 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.