By Topic

Bandstructure Effects in Silicon Nanowire Electron Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Neophytou, Neophytos ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN ; Paul, A. ; Lundstrom, M.S. ; Klimeck, G.

Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s* semiempirical atomistic tight-binding model coupled to a self-consistent Poisson solver is used for the dispersion calculation. A semi-classical, ballistic FET model is used to evaluate the current-voltage characteristics. It is found that the total gate capacitance is degraded from the oxide capacitance value by 30% for wires in all the considered transport orientations ([100], [110], [111]). Different wire directions primarily influence the carrier velocities, which mainly determine the relative performance differences, while the total charge difference is weakly affected. The velocities depend on the effective mass and degeneracy of the dispersions. The [110] and secondly the [100] oriented 3 nm thick nanowires examined, indicate the best ON-current performance compared to [111] wires. The dispersion features are strong functions of quantization. Effects such as valley splitting can lift the degeneracies particularly for wires with cross section sides below 3 nm. The effective masses also change significantly with quantization, and change differently for different transport orientations. For the cases of [100] and [111] wires the masses increase with quantization, however, in the [110] case, the mass decreases. The mass variations can be explained from the non-parabolicities and anisotropies that reside in the first Brillouin zone of silicon.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 6 )