System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Partial Channel Feedback Schemes Maximizing Overall Efficiency in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Young-June Choi ; NEC Labs. America, Princeton ; Saewoong Bahk

Opportunistic scheduling provides a good chance to improve wireless system performance by exploiting the underlying channel condition. There has been a lot of work on opportunistic scheduling, but the problem of finding the right feedback mechanism to convey channel information has largely been untouched. In emerging multichannel systems, the per- channel feedback induces a substantial amount of feedback overhead and requires high computational complexity. To reduce the feedback overhead, we consider an opportunistic feedback strategy that activates the channel feedback opportunistically according to the channel condition. Then, we combine the opportunistic feedback with the best-n channel feedback scheme where a mobile user chooses the best n channels and transfers this information to the base station. We analyze the throughput and the amount of channel feedback information for proportionally fair opportunistic scheduling under Rayleigh fading i.i.d. channels. The numerical results confirm that our partial feedback schemes achieve a remarkable reduction in the amount of feedback information at the cost of slight throughput degradation, thereby saving the scarce wireless uplink bandwidth and limited battery power.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:7 ,  Issue: 4 )