By Topic

Supporting Uncompressed HD Video Streaming without Retransmissions over 60GHz Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Uncompressed HD (high-definition) video delivery over wireless personal area networks (WPANs) is a challenging problem because of the limited bandwidth and variations in channel. The most straight forward technique to recover from channel errors is to retransmit corrupted packets. However, retransmissions introduce significant delay/jitter and require additional bandwidth. Therefore, retransmissions may be unsuitable for uncompressed video streaming. In this paper, we develop, simulate, and evaluate an millimeter- wave (mmWave) system for supporting uncompressed video streams up to 3-Gbps without any retransmissions. New features of the mmWave system incorporates: (i) UEP (unequal error protection) where different video bits (MSBs and LSBs) are protected differently, (ii) a multiple-CRC to determine whether MSB or/and LSB portions are in error, (iii) RS code swapping (RSS), an error concealment scheme which can conceal some errors in video pixels. Simulations using real uncompressed HD images indicate that the proposed mmWave system can maintain good average PSNR (peak-signal-to-noise-ratio) under poor channel conditions, achieving what is generally accepted as a good picture quality with PSNR values greater than 40 dB. Moreover, the proposed system results in less fluctuating PSNR values.

Published in:

2008 IEEE Wireless Communications and Networking Conference

Date of Conference:

March 31 2008-April 3 2008