Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Neural-Network-Based Model Reference Speed Control for High Precision Motion Control Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

This paper developed a model reference control scheme by introducing a PI controller and RBF neural network (RBFNN) controller for speed control of high precision motion control systems. In the paper the RBF controller is able to online learn the unknown model dynamics, parameter variation and disturbance of the system. The model reference adaptive control (MRAC) scheme is used to give better solutions with online adaptation. By using a PI controller, the dynamic performance of the system is improved. This paper introduced a feedback parameter , which makes it easier to assign the poles of the system. Thus, it is feasible to preserve favorable model-following characteristics under various conditions. The effectiveness of the proposed control scheme is demonstrated by simulation. It is found that the proposed scheme can reduce the plant’s sensitivity to parameter variation and disturbance. High precision performance is obtained when given constant and sine wave disturbance at the same time.

Published in:

Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth International Conference on

Date of Conference:

1-3 April 2008