By Topic

Laplace transform approach to analysis and synthesis of bessel type linear time-varying systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bayan, N. ; Univ. of Windsor, Windsor ; Erfani, S.

Two-dimensional Laplace transform (2DLT) is applied as a powerful analysis and synthesis tool for linear time-varying networks resulting in Bessel type linear ordinary differential equations. In this sense a parallel and more powerful closed-form solution (compared to traditional transforms) is obtained which is analogous to that in which one-dimensional Laplace transform is used for linear time-invariant (LTI) systems.

Published in:

Circuits and Systems, 2007. MWSCAS 2007. 50th Midwest Symposium on

Date of Conference:

5-8 Aug. 2007