Cart (Loading....) | Create Account
Close category search window
 

Increasing the Autonomy of Mobile Robots by On-line Learning Simultaneously at Different Levels of Abstraction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Richert, W. ; Univ. of Paderborn, Paderborn ; Luke, O. ; Nordmeyer, B. ; Kleinjohann, B.

We present a framework that is able to handle system and environmental changes by learning autonomously at different levels of abstraction. It is able to do so in continuous and noisy environments by 1) an active strategy learning module that uses reinforcement learning and 2) a dynamically adapting skill module that proactively explores the robot's own action capabilities and thereby providing actions to the strategy module. We present results that show the feasibility of simultaneously learning low-level skills and high-level strategies in order to reach a goal while reacting to disturbances like hardware damages. Thereby, the robot drastically increases its overall autonomy.

Published in:

Autonomic and Autonomous Systems, 2008. ICAS 2008. Fourth International Conference on

Date of Conference:

16-21 March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.