By Topic

Just-in-Time Scheduling for Multichannel EPONs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
McGarry, M.P. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ ; Reisslein, M. ; Colbourn, C.J. ; Maier, M.
more authors

We investigate optical network unit (ONU) grant scheduling techniques for multichannel Ethernet passive optical networks (EPONs), such as wavelength division multiplexed (WDM) EPONs. We take a scheduling theoretic approach to solving the grant scheduling problem. We introduce a two-layer structure of the scheduling problem and investigate techniques to be used at both layers. We present an extensive ONU grant scheduling simulation study that provides: 1) insight into the nature of the ONU grant scheduling problem and 2) indication of which scheduling techniques are best for certain conditions. We find that the choice of scheduling framework has typically the largest impact on average queueing delay and achievable channel utilization. An offline scheduling framework is not work conserving and consequently wastes channel resources while waiting for all ONU REPORT messages before making access decisions. An online scheduling framework, although work conserving, does not provide the best performance since scheduling decisions are made with the information contained in a single ONU REPORT. We propose a novel online just-in-time (JIT) scheduling framework that is work conserving while increasing scheduling control by allowing the channel availability to drive the scheduling process. In online JIT, multiple ONU REPORTs can be considered together when making scheduling decisions, resulting in lower average queueing delay under certain conditions and a more effective service differentiation of ONUs.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 10 )