By Topic

Multifunctional Grid-Connected Multimodule Power Converters Capable of Operating in Single-Pulse and PWM Switching Modes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yazdani, D. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON ; Bakhshai, A. ; Joos, G.

Pulsewidth-modulated (PWM) techniques equip power converters with unique features such as input-output linearity and control flexibility. Nevertheless, frequent switching of semiconductor switching devices causes considerable switching loss, and therefore makes traditional two-level PWM converters inappropriate for high-power applications. Two alternatives for building modular structures, namely multipulse and multimodule PWM converters were introduced to provide not only voltage and current sharing among the semiconductor switching devices, but also a high-quality output voltage at a much lower switching frequency. While multipulse converters offer minimal switching losses, low-order harmonic neutralization, and the best utilization of the inverter, multimodule PWM converters give control flexibility and power structure simplicity. This paper combines these two, and preserves the advantages of both multipulse and multimodule PWM converters. This not only provides an additional degree of freedom for voltage control, but also enables the converter to operate in PWM mode during transient and in single-pulse mode during the steady state. For the PWM switching mode, a special space vector strategy of 3 p.u. switching frequency is presented to maximize the voltage utilization and maintain a linear transfer characteristic. The power structure and control methods are analyzed, and validated by simulation and experimentally.

Published in:

Power Electronics, IEEE Transactions on  (Volume:23 ,  Issue: 3 )