By Topic

A Simple and Accurate Methodology to Optimize Parameter-Dependent Finite-Difference Time-Domain Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Panaretos, A.H. ; Dept. of Electr. Eng., Arizona State Univ., Tempe, AZ ; Diaz, R.E.

A two-stage simple and accurate methodology is presented for the dispersion error minimization of parameter-dependent finite-difference time-domain schemes over a useful bandwidth. The methodology is rigorously developed for both 2-D and 3-D schemes. First, the anisotropy error is treated by expanding the spatial part of the numerical dispersion relation in a cosine-Fourier series, and eliminating the contribution of the angle-dependent terms. The dispersion error is then corrected by employing a modified single-frequency accurate temporal finite-difference operator. This modification can be translated into the parameters of the updating equations, which greatly simplifies its programming. The theoretically derived results are further supported by numerical experiments.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:56 ,  Issue: 5 )