By Topic

Optimal Restoration of Distribution Systems Using Dynamic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

This paper solves the distribution system restoration problem using dynamic programming with state reduction. The algorithm is an operator-permissive, automated approach to the restoration of distribution systems after a blackout. The timing and selection of feeders to be energized are represented as states in a dynamic programming formulation. An enhanced dynamic programming method reduces the number of states by grouping states that are close to each other and selecting the best state. The algorithm was tested on an 8 feeder/32 load distribution system. The method is applicable to radially configured systems.

Published in:

Power Delivery, IEEE Transactions on  (Volume:23 ,  Issue: 3 )