By Topic

Crack Shape Reconstruction in Eddy Current Testing Using Machine Learning Systems for Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bernieri, A. ; Dept. of Autom., Cassino Univ., Cassino ; Ferrigno, L. ; Laracca, M. ; Molinara, M.

Nondestructive testing techniques for the diagnosis of defects in solid materials can follow three steps, i.e., detection, location, and characterization. The solutions currently on the market allow for good detection and location of defects, but their characterization in terms of the exact determination of defect shape and dimensions is still an open question. This paper proposes a method for the reliable estimation of crack shape and dimensions in conductive materials using a suitable nondestructive instrument based on the eddy current principle and machine learning system postprocessing. After the design and tuning stages, a performance comparison between the two machine learning systems [artificial neural network (ANN) and support vector machine (SVM)] was carried out. An experimental validation carried out on a number of specimens with different known cracks confirmed the suitability of the proposed approach for defect characterization.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:57 ,  Issue: 9 )