Cart (Loading....) | Create Account
Close category search window
 

Distributed Average Consensus in Sensor Networks with Random Link Failures and Communication Channel Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kar, S. ; Carnegie Mellon Univ., Pittsburgh ; Moura, J.M.F.

In this paper we study distributed average consensus type algorithms in sensor networks with random network link failures and communication channel. Specifically, the network links fail randomly across iterations, and communication through an active link incurs additive stochastic noise. We consider the A - ND algorithm for distributed average consensus under such imperfect communication scenario. Using results from the theory of controlled Markov processes and stochastic approximation, we show that the A - ND algorithm leads to consensus of the sensor states. In particular, all the sensor states converge a.s. to a finite random variable thetas, the latter being an unbiased estimate of the desired average. We explicitly characterize the resulting the mean-squared error (m.s.e.) and show that the m.s.e. can be made arbitrarily small by tuning certain parameters of the algorithm. But, reducing the m.s.e. in this way, decrease the convergence rate of the algorithm, and we obtain an interesting trade-off between the m.s.e. and the convergence rate of the algorithm. Our results show that the sensor network topology plays a significant role in determining the convergence rate of these algorithms.

Published in:

Signals, Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on

Date of Conference:

4-7 Nov. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.