Cart (Loading....) | Create Account
Close category search window

Capacity Scaling of Multi-User MIMO with Limited Feedback in a Multi-Cell Environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Thiele, L. ; Heinrich-Hertz-Inst., Berlin ; Jungnickel, V. ; Schellmann, M. ; Zirwas, W.

We demonstrate that the fundamental capacity scaling law of multiple-input multiple-output radio systems, being proportional to the minimum of the number of receive and transmit antennas, holds also for the interference-limited multi-user multi-cell downlink scenario. It can be realized by using a sophisticated combination of physical and medium access control layer algorithms. The algorithms have low complexity and require no coherent channel state information at the transmitter. Instead, limited feedback on the effective channel quality is provided via a low-rate control channel. Our set of algorithms offers a fixed grid of beams at the transmitter, where the terminals can select the best beam set. Further, we use receivers exploiting the instantaneous knowledge of the interference at the terminal side. A score-based scheduler, which asymptotically reaches proportional fairness, is used to switch adaptively between multi-user diversity and multi-user multiplexing, in a frequency-selective manner. We provide many insights into the synergy between these algorithms from multi-cell simulations in a hexagonal cellular deployment.

Published in:

Signals, Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on

Date of Conference:

4-7 Nov. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.