Cart (Loading....) | Create Account
Close category search window

An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nollo, G. ; Dept. of Phys., Univ. of Trento, Trento ; Marconcini, M. ; Faes, L. ; Bovolo, F.
more authors

This paper presents an automatic system for the analysis and classification of atrial fibrillation (AF) patterns from bipolar intracardiac signals. The system is made up of: 1) a feature- extraction module that defines and extracts a set of measures potentially useful for characterizing AF types on the basis of their degree of organization; 2) a feature-selection module (based on the Jeffries-Matusita distance and a branch and bound search algorithm) identifying the best subset of features for discriminating different AF types; and 3) a support vector machine technique-based classification module that automatically discriminates the AF types according to the Wells' criteria. The automatic system was applied on 100 intracardiac AF signal strips and on a selection of 11 representative features, demonstrating: a) the possibility to properly identify the most significant features for the discrimination of AF types; b) higher accuracy (97.7% using the seven most informative features) than the traditional maximum likelihood classifier; and c) effectiveness in AF classification also with few training samples (accuracy = 88.3% with only five training signals). Finally, the system identifies a combination of indices characterizing changes of morphology of atrial activation waves and perturbation of the isoelectric line as the most effective in separating the AF types.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:55 ,  Issue: 9 )

Date of Publication:

Sept. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.