By Topic

Chasing the Weakest System Model for Implementing Ω and Consensus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hutle, M. ; I&C-LSR Group, Ecole Polytech. Federate de Lausanne (EPFL), Lausanne, Switzerland ; Malkhi, D. ; Schmid, U. ; Lidong Zhou

Aguilera et al. and Malkhi et al. presented two system models, which are weaker than all previously proposed models where the eventual leader election oracle Omega can be implemented, and thus, consensus can also be solved. The former model assumes unicast steps and at least one correct process with f outgoing eventually timely links, whereas the latter assumes broadcast steps and at least one correct process with f bidirectional but moving eventually timely links. Consequently, those models are incomparable. In this paper, we show that Omega can also be implemented in a system with at least one process with f outgoing moving eventually timely links, assuming either unicast or broadcast steps. It seems to be the weakest system model that allows to solve consensus via Omega-based algorithms known so far. We also provide matching lower bounds for the communication complexity of Omega in this model, which are based on an interesting ldquostabilization propertyrdquo of infinite runs. Those results reveal a fairly high price to be paid for this further relaxation of synchrony properties.

Published in:

Dependable and Secure Computing, IEEE Transactions on  (Volume:6 ,  Issue: 4 )