Cart (Loading....) | Create Account
Close category search window

Continuous-Wavelet Transform for Fault Location in Distribution Power Networks: Definition of Mother Wavelets Inferred From Fault Originated Transients

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The paper presents a fault location procedure for distribution networks based on the wavelet analysis of the fault-generated traveling waves. In particular, the proposed procedure implements the continuous wavelet analysis applied to the voltage waveforms recorded during the fault in correspondence of a network bus. In order to improve the wavelet analysis, an algorithm is proposed to build specific mother wavelets inferred from the fault-originated transient waveforms. The performance of the proposed algorithm are analyzed for the case of the IEEE 34-bus test distribution network and compared with those achieved by using the more traditional Morlet mother wavelet.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 2 )

Date of Publication:

May 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.