By Topic

Implementation of Parallel LFSR-based Applications on an Adaptive DSP featuring a Pipelined Configurable Gate Array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Mucci, C. ; ARCES, Univ. of Bologna, Bologna ; Vanzolini, L. ; Mirimin, I. ; Gazzola, D.
more authors

Linear feedback shift registers (LFSRs) are common structures in many application fields, including cryptography, digital broadcasting and communication. High- throughput requirements need highly parallel implementations, usually accomplished in state of the art system on chips (SoCs) with application specific coprocessors. Although this approach achieves the required performance, it rapidly shows lack of flexibility when those devices are proposed, as an example, for multi-standard modems or for security applications in which run-time update can provide added value. This paper shows the implementation of parallel LFSR-based applications on an embedded adaptive DSP featuring a Pipelined Configurable Gate Array (PiCoGA). With respect to standard embedded FPGAs, pipelined devices usually provide better performance, e.g. in terms of speed, but they commonly show the undeniable drawback of additional design constraints. As a test-case, we consider the implementation of the 32-bit CRC used in the Ethernet standard that achieves on the target architecture up to ~25Gbit/sec throughput, with a parallel LFSR processing 128 bit at time, which is comparable to the performance offered by some ASIC devices.

Published in:

Design, Automation and Test in Europe, 2008. DATE '08

Date of Conference:

10-14 March 2008