By Topic

A Simulation Methodology for Worst-Case Response Time Estimation of Distributed Real-Time Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Soheil Samii ; Department of Computer and Information Science, Linköpings universitet, Sweden. sohsa@ida.liu.se ; Sergiu Rafiliu ; Petru Eles ; Zebo Peng

In this paper, we propose a simulation-based methodology for worst-case response time estimation of distributed real-time systems. Schedulability analysis produces pessimistic upper bounds on process response times. Consequently, such an analysis can lead to overdesigned systems resulting in unnecessarily increased costs. Simulations, if well conducted, can lead to tight lower bounds on worst-case response times, which can be an essential input at design time. Moreover, such a simulation methodology is very important in situations when the running application or the underlying platform is such that no formal timing analysis is available. Another important application of the proposed simulation environment is the validation of formal analysis approaches, by estimating their degree of pessimism. We have performed such an estimation of pessimism for two response-time analysis approaches for distributed embedded systems based on two of the most important automotive communication protocols: CAN and FlexRay.

Published in:

2008 Design, Automation and Test in Europe

Date of Conference:

10-14 March 2008