By Topic

Cost-and Power Optimized FPGA based System Integration: Methodologies and Integration of a Low-Power Capacity-based Measurement Application on Xilinx FPGAs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Paulsson, K. ; Univ. Karlsruhe (TH), Karlsruhe ; Hubner, M. ; Becker, J.

The application of field programmable gate arrays (FPGAs) in low power and low cost industrial mass products has become an important issue for designers of electronic systems. The flexibility and performance offered by reconfigurable hardware architectures often stands in the opposite to increased power consumption in comparison to application specific integrated circuit (ASIC) solutions. By exploiting the flexibility of reconfigurable hardware architectures, e.g. the capability of run-time HW reconfiguration of some modern FPGA devices, power consumption of FPGA-based solutions can be further decreased. This paper presents an approach for cost- and power optimized system integration of a low-power capacity-based measurement system by exploiting the dynamic and partial reconfiguration capability of Xilinx FPGAs.

Published in:

Design, Automation and Test in Europe, 2008. DATE '08

Date of Conference:

10-14 March 2008