By Topic

The Electromagnetic Calorimeter Trigger System for the AMS-02 Experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

20 Author(s)
Cadoux, F. ; Lab. d''Annecy-le-Vieux de Phys. des Particules, Annecy-Le-Vieux ; Cervelli, F. ; Coignet, G. ; Cougolat, G.
more authors

AMS-02 is an astroparticle experiment designed for a very precise measurement of the primary cosmic rays spectrum. The experiment will operate on board the ISS at a 400 km altitude for a period of about 3 years. The main scientific goals of the experiment are the search for antimatter, for dark matter and the study of gamma rays. In AMS-02 the electromagnetic calorimeter plays a key role for its high capability to measure e+, e- and gamma spectra and to suppress the background generated by p and He nuclei. To directly detect photons the calorimeter must provide a stand alone trigger. The proposed trigger, presented in this article, will have the capability to detect photons with energy above 4 GeV with an efficiency of about 100%. The hardware implementation comprises an analog section, comparing the photomultiplier signal with a given threshold, and a digital section applying the trigger selection algorithm.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:55 ,  Issue: 2 )