By Topic

Understanding Plasma Fluid Dynamics Inside Plasma Torches Through Advanced Modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The aim of this paper is to investigate the behavior of different types of transferred-arc dual-gas plasma torches used for the cutting of metallic materials by means of a 2-D FLUENT-based numerical model, putting into evidence the physical reasons for the industrial success of various design and process solutions appeared over the last years, such as the following: vented-nozzle technology, various different approaches for the geometry of the plasma chamber, the effect of externally superimposed magnetic fields, and secondary-gas-swirl injections with different directions. Flow and heat-transfer equations are solved with coupled electromagnetic ones for local-thermodynamic-equilibrium optically thin plasma, whereas turbulence phenomena are taken into account by means of a K-epsiv realizable model. The simulations include a prediction of the thermal behavior of the solid components of the torch head, including electrode and hafnium insert, and the efficiency of nozzle- and electrode-cooling systems in various operating conditions, including gas mixtures (O2/air, H35/N2, and N2/N2). Radiation is included in the calculation of heat transfer to the surfaces of the components, using a customized discrete-ordinate model. Results have been analyzed with respect to plasma behavior, and conclusions have been drawn, concerning the powerfulness of numerical simulation as a tool for cutting torch design.

Published in:

Plasma Science, IEEE Transactions on  (Volume:36 ,  Issue: 2 )