Cart (Loading....) | Create Account
Close category search window
 

Nonlinear Evolution of Gaussian ASE Noise in ZMNL Fiber

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dlubek, M.P. ; Univ. of Nottingham, Nottingham ; Phillips, A.J. ; Larkins, Eric C.

This paper investigates the evolution of kurtosis of the input Gaussian amplified spontaneous emission (ASE) noise in a nonlinear fiber with negligible dispersion. The nonlinear Schrodinger equation (NLSE) describing propagation in optical fibers is simplified such that the fiber represents a zero memory nonlinear (ZMNL) system, and this approximation allows the development of analytical formulas for the statistical moments of the output noise. It is possible to calculate moments of all integer orders and the explicit expressions for the first four moments are given. The investigations show that the ASE noise does not preserve its Gaussian character when Kerr nonlinearity is significant. This observation proves that the common assumption of the Gaussian output ASE is not necessarily valid. Numerical simulations are provided to support the derivation. Kurtosis deviating significantly from the value typical for Gaussian noise is also an indicator that BER calculation in the coherent systems based on the assumption that ASE is Gaussian is likely to be inaccurate.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 8 )

Date of Publication:

April15, 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.