By Topic

Design and Modeling of a Nanomechanical Sensor Using Silicon Photonic Crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chengkuo Lee ; Nat. Univ. of Singapore, Singapore ; Radhakrishnan, R. ; Chen, Chii-Chang ; Jing Li
more authors

Conventionally a line defect in the photonic crystal (PhC) is used to create a waveguide for light propagation through the PhC. A PhC based filter is designed by introducing micro-cavities within the line defect so as to form the resonant bandgap structure for PhC. Such a PhC waveguide (PhCWG) filter shows sharp resonant peak in output wavelength spectrum. We proposed a suspended silicon bridge structure comprising this PhCWG filter structure. Since the output resonant wavelength is sensitive to the shape of air holes and defect length of the micro-cavity. Shift of the output resonant wavelength is observed for suspended PhCWG beam structure under particular force loading. In other words, the induced strain modifies the shape of air holes and the spacing among them. Such an effect leads to shift of resonant wavelength. Under optical detection limitation of 0.1 nm for resonant wavelength shift, the sensing capability of this nanomechanical sensor is derived as that vertical deformation is 20-25 nm at the center and the smallest strain is 0.005% for defect length. This innovative design conceptualizes a new application area for PhCs, i.e., the nanometer-scale physical sensors for strains and forces.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 7 )