By Topic

Modeling of a Time-Spreading OCDMA System Including Nonperfect Time Gating, Optical Thresholding, and Fully Asynchronous Signal/Interference Overlapping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Amaya, W. ; Univ. Politec. de Valencia, Valencia ; Pastor, D. ; Capmany, J.

We present an extended theoretical model for time-spreading optical code-division multiple-access (OCDMA) coherent systems. We have updated well-known model to evaluate multiuser interference to include arbitrary encoded/decoded chip shape, receiver transfer function, and optical thresholding before detection. Full asynchronous regime is also assumed to exploit statistical benefits over the dominant primary beat noise. The model provides clear improvements in terms of number of users and required intercodes crosstalk, leading to more feasible OCDMA systems.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 7 )