By Topic

Analog and Digital Optical Pulse Synthesizers Using Arrayed-Waveguide Gratings for High-Speed Optical Signal Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tsuda, H. ; Keio Univ., Yokohama ; Tanaka, Y. ; Shioda, T. ; Kurokawa, T.

In this paper, analog and digital optical pulse synthesizers using high-resolution arrayed-waveguide gratings (AWG) have been developed. The analog type of optical synthesizer consists of an AWG with an integrated 45deg, curved-surfaced mirror, a 4-f lens system, and an optically addressable spatial light modulator. The effective frequency resolution is 14.5 GHz. A dispersion compensation experiment is successfully carried out and a transform-limited short pulse has been obtained. This digital type of optical synthesizer comprises 30 frequency separated channels with a spacing of 12.5 GHz, where each channel includes an amplitude modulator and a phase modulator. The rectangular-shaped pulse is generated with this pulse synthesizer, together with a 12.5-GHz-spacing, optical frequency comb. The synthesizer can generate an optical pulse with any waveform. Moreover, using periodic characteristics of the pulse synthesizer, a 250-GHz repetition rate pulse train was generated, in combination with an ultrawideband, waveguide type of Fabry-Perot electrooptic modulator.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 6 )