By Topic

High-Power 1.06- \mu{\hbox {m}} Near-Diffraction-Limited Planar Tapered Amplifier Injected With Seed Light Through a Fiber Biconical Microlens

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

We designed a 1.06-mum single-quantum-well (SQW) InGaAs/AlGaAs planar tapered amplifier that was injected with seed light of a fiber Bragg grating stabilized laser diode through a fiber biconical microlens. To increase the amplifier output, the microlens with approximately 3- and 11-mum radii on vertical and horizontal axes, respectively, provides high coupling efficiency between the laser diode and the amplifier. The microlens also controls propagation in the tapered gain area to suppress the filament formation. In addition, the small radii of the microlens reduce near-end reflection at the amplifier input to prevent parasitic laser oscillation of the amplifier. We demonstrated near-diffraction-limited output of 5.5 W with the beam quality factor M2 of 1.5 by using a 3-mm-long amplifier having an optical confinement factor of 1.2%.

Published in:

Journal of Lightwave Technology  (Volume:26 ,  Issue: 6 )