By Topic

Ultrasmall Thermally Tunable Microring Resonator With a Submicrometer Heater on Si Nanowires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daoxin Dai ; Zhejiang Univ., Hangzhou ; Liu Yang ; Sailing He

An ultracompact widely tunable thermooptical (TO) microring resonator (MRR) filter based on Si nanowires is presented. The Si nanowire waveguide has a insulator, Si core, a up-cladding, and a thin metal film at the top. The metal circuit along the microring is used as a submicrometer heater which has the same width as the Si nanowire waveguide. The up-cladding is optimized to reduce the light absorption of the metal as well as to have a good heat-conduction from the heater to the Si core. Two pads used as the contact points for the probes connecting to the electrical power are perpendicularly connected to the microring by using optimized T-junctions (with a low excess loss of about 0.06 dB per T-junction). With such a design, the present thermally tunable microring resonator (MRR) can be fabricated by using a standard fabrication process with a single lithography process, which is much simpler than the fabrication with double lithography processes used for the conventional TO components. Finally, the simulation results show that the designed MRR has a wide tuning range of about 20 nm with a low heating power of 5 mW.

Published in:

Lightwave Technology, Journal of  (Volume:26 ,  Issue: 6 )