By Topic

Generation of Power-Efficient FCC-Compliant UWB Waveforms Using FBGs: Analysis and Experiment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, we design, analyze, and demonstrate experimentally U.S. Federal Communications Commission (FCC)- compliant power-efficient ultrawideband (UWB) waveforms generated by optical pulse shaping. The time-domain pulse shape is written in the frequency domain, and a single-mode fiber performs the frequency-to-time conversion. The waveform is inscribed in the frequency domain by the fiber Bragg grating (FBG). A significant challenge for this approach is elimination of an unwanted, positive rectangular pulse superimposed on the desired waveform. Our innovative use of balanced photodetection eliminates this pedestal, assuring compliance with the FCC mask at low frequency. Three UWB pulses with duration of 0.3,0.6, and 1.2 ns are designed and tested experimentally. Whereas an excellent match between the optimized and measured pulses is achieved for the simpler, shorter duration waveforms, the noise in the fabrication process of FBGs limits the generation of the more complex, longer duration waveforms.

Published in:

Journal of Lightwave Technology  (Volume:26 ,  Issue: 5 )