By Topic

Darwinian, Lamarckian, and Baldwinian (Co)Evolutionary Approaches for Feature Weighting in K -means-Based Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gancarski, P. ; Louis Pasteur Univ., Strasbourg ; Blansche, A.

Feature weighting is an aspect of increasing importance in clustering because data are becoming more and more complex. In this paper, we propose new feature weighting methods based on genetic algorithms. These methods use the cost function defined in LKM as a fitness function. We present new methods based on Darwinian, Lamarckian, and Baldwinian evolution. For each one of them, we describe evolutionary and coevolutionary versions. We compare classical hill-climbing optimization with these six genetic algorithms on different datasets. The results show that the proposed methods, except Darwinian methods, are always better than the LKM algorithm.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:12 ,  Issue: 5 )