Cart (Loading....) | Create Account
Close category search window
 

Scalable unified dual-radix architecture for Montgomery multiplication in GF(P) and GF(2n)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Modular multiplication is the most dominant arithmetic operation in elliptic curve cryptography (ECC), which is a type of public-key cryptography. Montgomery multiplication is commonly used as a technique for the modular multiplication and required scalability since the bit length of operands varies depending on the security levels. Also, ECC is performed in GF(P) or GF(2n), and unified architectures for GF(P) and GF(2n) multiplier are needed. However, in previous works, changing frequency or dual-radix architecture is necessary to deal with delay-time difference between GF(P) and GF(2n) circuits of the multiplier because the critical path of GF(P) circuit is longer. This paper proposes a scalable unified dual-radix architecture for Montgomery multiplication in GF(P) and GF(2n). The proposed architecture unifies 4 parallel radix-216 multipliers in GF(P) and a radix-264 multiplier in GF(2n) into a single unit. Applying lower radix to GF(P) multiplier shortens its critical path and makes it possible to compute the operands in the two fields using the same multiplier at the same frequency so that clock dividers to deal with the delay-time difference are not required. Moreover, parallel architecture in GF(P) reduces the clock cycles increased by dual-radix approach. Consequently, the proposed architecture achieves to compute GF(P) 256-bit Montgomery multiplication in 0.23 mus.

Published in:

Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific

Date of Conference:

21-24 March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.