By Topic

Timing-power optimization for mixed-radix Ling adders by integer linear programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yi Zhu ; Univ. of California, San Diego, La Jolla ; Jianhua Liu ; Haikun Zhu ; Chung-Kuan Cheng

This paper optimizes timing and power consumption of mixed-radix Ling adders with the physical area constraints using an integer linear programming formulation. Each cell in the prefix network is flexible to have different radix and size, and Ling carries are incorporated. Optimal solutions are obtained by solving the proposed formulation. The experiments show that the produced optimal structures have a large power saving compared with traditional designs. The ASIC implementation results are superior to those produced by Synopsys Module Compiler.

Published in:

Design Automation Conference, 2008. ASPDAC 2008. Asia and South Pacific

Date of Conference:

21-24 March 2008