By Topic

A Markovian Approach to Radio Access Technology Selection in Heterogeneous Multiaccess/Multiservice Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xavier Gelabert ; Universitat Politecnica de Catalunya (UPC), Barcelona ; Jordi Pérez-Romero ; Oriol Sallent ; Ramon Agustí

This paper addresses the problem of radio access technology (RAT) selection in heterogeneous multi-access/multi-service scenarios. For such purpose, a Markov model is proposed to compare the performance of various RAT selection policies within these scenarios. The novelty of the approach resides in the embedded definition of the aforementioned RAT selection policies within the Markov chain. In addition, the model also considers the constraints imposed by those users with terminals that only support a subset of all the available RATs (i.e. multi-mode terminal capabilities). Furthermore, several performance metrics may be measured to evaluate the behaviour of the proposed RAT selection policies under varying offered traffic conditions. In order to illustrate the validation and suitability of the proposed model, some examples of operative radio access networks are provided, including the GSM/EDGE Radio Access Network (GERAN) and the UMTS Radio Access Network (UTRAN), as well as several service-based, load-balancing and terminal-driven RAT selection strategies. The flexibility exhibited by the presented model enables to extend these RAT selection policies to others responding to diverse criteria. The model is successfully validated by means of comparing the Markov model results with those of system-level simulations.

Published in:

IEEE Transactions on Mobile Computing  (Volume:7 ,  Issue: 10 )