By Topic

A Theory for Sampling Signals From a Union of Subspaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu, Y.M. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL ; Do, M.N.

One of the fundamental assumptions in traditional sampling theorems is that the signals to be sampled come from a single vector space (e.g., bandlimited functions). However, in many cases of practical interest the sampled signals actually live in a union of subspaces. Examples include piecewise polynomials, sparse representations, nonuniform splines, signals with unknown spectral support, overlapping echoes with unknown delay and amplitude, and so on. For these signals, traditional sampling schemes based on the single subspace assumption can be either inapplicable or highly inefficient. In this paper, we study a general sampling framework where sampled signals come from a known union of subspaces and the sampling operator is linear. Geometrically, the sampling operator can be viewed as projecting sampled signals into a lower dimensional space, while still preserving all the information. We derive necessary and sufficient conditions for invertible and stable sampling operators in this framework and show that these conditions are applicable in many cases. Furthermore, we find the minimum sampling requirements for several classes of signals, which indicates the power of the framework. The results in this paper can serve as a guideline for designing new algorithms for various applications in signal processing and inverse problems.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 6 )