By Topic

Transient Stability Enhancement by Fuzzy Logic-Controlled SMES Considering Coordination With Optimal Reclosing of Circuit Breakers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali, Mohd.H. ; Ryerson Univ., Toronto ; Murata, T. ; Tamura, J.

This paper aims at investigating the effect of the coordination of fuzzy logic-controlled superconducting magnetic energy storage (SMES) and optimal reclosing on the transient stability in a simulated multi-machine power system during unsuccessful reclosing of circuit breakers. The performance of the coordinated operation of fuzzy logic-controlled SMES and optimal reclosing is compared to that of the coordinated operation of fuzzy logic-controlled SMES and conventional auto-reclosing. Also, the performance of the fuzzy logic-controlled SMES is compared to that of an alternative static nonlinear controlled SMES. The control scheme of SMES is based on a pulse width modulation (PWM) voltage source converter (VSC) and a two-quadrant dc-dc chopper using gate-turn-off (GTO) thyristor. The parameters of the proposed fuzzy logic controller are optimally tuned by the genetic algorithm (GA) method. Simulation results of both balanced and unbalanced faults at different points in a multi-machine power system show that the coordinated operation of fuzzy controlled SMES and optimal reclosing is able to stabilize the system well in case of an unsuccessful reclosing. Moreover, the transient stability performance of the coordinated operation of fuzzy controlled SMES and optimal reclosing is better than that of the coordinated operation of fuzzy controlled SMES and conventional auto-reclosing. Also, the performance of the fuzzy logic-controlled SMES is better than that of the static nonlinear controlled SMES.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 2 )