By Topic

Propagation Over Clutter: Physical Stochastic Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dmitry Chizhik ; Alcatel-Lucent, Holmdel ; Jonathan Ling

Propagation of radio signals from a base above clutter, such as buildings and trees, to a mobile immersed in clutter is treated theoretically by accounting for random diffuse scattering at the mobile. Small-scale fading and distance-dependent loss are treated in a unified way, as opposed to the heuristic methodologies, which formulate them as separate factors. Closed form expressions are derived for path gain and for angular spectrum at the base in both urban and heavily foliated environments. The resulting predictions are in close agreement with widely accepted models and empirical results. The angular spectrum at the base in urban environments is found to be Lorentzian of width close to that reported for measurements in Aarhus. In foliated environments, vegetation is represented as statistically homogeneous diffuse scattering medium, resulting in a Gaussian-shaped angular spectrum at the base.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:56 ,  Issue: 4 )