Scheduled System Maintenance:
On April 27th, single article purchases and IEEE account management will be unavailable from 2:00 PM - 4:00 PM ET (18:00 - 20:00 UTC).
We apologize for the inconvenience.
By Topic

Inverse Compositional Estimation of 3D Pose And Lighting in Dynamic Scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Yilei Xu ; Dept. of Electr. Eng., Univ. of California, Riverside, CA ; Roy-Chowdhury, A.K.

In this paper, we show how we can estimate, accurately and efficiently, the 3D motion of a rigid object and time-varying lighting in a dynamic scene. This is achieved in an inverse compositional tracking framework with a novel warping function that involves a 2D rarr 3D rarr 2D transformation. This also allows us to extend traditional two-frame inverse compositional tracking to a sequence of frames, leading to even higher computational savings. We prove the theoretical convergence of this method and show that it leads to significant reduction in computational burden. Experimental analysis on multiple video sequences shows impressive speedup over existing methods while retaining a high level of accuracy.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:30 ,  Issue: 7 )