By Topic

Discrete Surface Ricci Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miao Jin ; State Univ. Of New York at Stony Brook, Stony Brook, NY ; Junho Kim ; Feng Luo ; Xianfeng Gu

This work introduces a unified framework for discrete surface Ricci flow algorithms, including spherical, Euclidean, and hyperbolic Ricci flows, which can design Riemannian metrics on surfaces with arbitrary topologies by user-defined Gaussian curvatures. Furthermore, the target metrics are conformal (angle-preserving) to the original metrics. A Ricci flow conformally deforms the Riemannian metric on a surface according to its induced curvature, such that the curvature evolves like a heat diffusion process. Eventually, the curvature becomes the user defined curvature. Discrete Ricci flow algorithms are based on a variational framework. Given a mesh, all possible metrics form a linear space, and all possible curvatures form a convex polytope. The Ricci energy is defined on the metric space, which reaches its minimum at the desired metric. The Ricci flow is the negative gradient flow of the Ricci energy. Furthermore, the Ricci energy can be optimized using Newton's method more efficiently. Discrete Ricci flow algorithms are rigorous and efficient. Our experimental results demonstrate the efficiency, accuracy and flexibility of the algorithms. They have the potential for a wide range of applications in graphics, geometric modeling, and medical imaging. We demonstrate their practical values by global surface parameterizations.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 5 )