By Topic

Dielectric Properties and Crystalline Morphology of Low Density Polyethylene Blended with Metallocene Catalyzed Polyethylene

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wang, X. ; Xi''an Jiaotong Univ., Xi''an ; He, H.Q. ; Tu, D.M. ; Lei, C.
more authors

Dielectric properties of low-density polyethylene (LDPE) blended with metallocene catalyzed polyethylene (MPE) to 1, 3, 5 wt% of the latter are reported. It was found that the 1 wt% MPE blend had the lowest volume resistivity, the highest direct current (DC) breakdown strength and the least accumulated space charge. The crystalline morphology of the blends was studied through differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and small-angle light scattering (SALS) measurements. It was found that blending increased the percentage crystallinity, decreased the spherulite size and caused the formation of imperfect spherulites, i.e. spherulites containing defects and impurities in their crystalline phases, and thus fewer impurities and defects on their boundaries. The improvement in dielectric properties of the blends, especially the 1 wt% MPE blend, is attributed to the increase in crystallinity and the formation of imperfect spherulites.

Published in:

Dielectrics and Electrical Insulation, IEEE Transactions on  (Volume:15 ,  Issue: 2 )