Cart (Loading....) | Create Account
Close category search window
 

A Low-Complexity Detector for Large MIMO Systems and Multicarrier CDMA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vardhan, K. ; Cisco Syst. (India) Private Ltd., Bangalore ; Mohammed, S.K. ; Chockalingam, A. ; Rajan, B.S.

We consider large MIMO systems, where by 'large' we mean number of transmit and receive antennas of the order of tens to hundreds. Such large MIMO systems will be of immense interest because of the very high spectral efficiencies possible in such systems. We present a low-complexity detector which achieves uncoded near-exponential diversity performance for hundreds of antennas (i.e., achieves near SISO AWGN performance in a large MIMO fading environment) with an average per-bit complexity of just O(NtNr), where Nt and Nr denote the number of transmit and receive antennas, respectively. With an outer turbo code, the proposed detector achieves good coded bit error performance as well. For example, in a 600 transmit and 600 receive antennas V-BLAST system with a high spectral efficiency of 450 bps/Hz (using BPSK and rate-3/4 turbo code), our simulation results show that the proposed detector performs to within about 7 dB from capacity. This practical feasibility of the proposed high-performance, low-complexity detector could potentially trigger wide interest in the theory and implementation of large MIMO systems. We also illustrate the applicability of the proposed detector in the low-complexity detection of high-rate, non-orthogonal space-time block codes and large multicarrier CDMA (MC-CDMA) systems. In large MC-CDMA systems with hundreds of users, the proposed detector is shown to achieve near single-user performance at an average per-bit complexity linear in number of users, which is quite appealing for its use in practical CDMA systems.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 3 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.