Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Initialization of a Nonlinear Identification Algorithm Applied to Laboratory Plant Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brus, L. ; Dept. of Inf. Technol., Uppsala Univ., Uppsala ; Wigren, T. ; Carlsson, B.

New techniques for recursive identification of systems described by nonlinear ordinary differential equation models are discussed. The model is of black-box state space type, where the right-hand side function is estimated as a multi-variate polynomial in the states and inputs, with the parameters selected to be the polynomial coefficients. An algorithm based on Kalman filtering techniques is derived, where a numerical differentiation scheme, used for generation of approximate state variables is a key ingredient. The Kalman-filter-based algorithm is, for example, suitable for initialization of a previously published recursive prediction error method (RPEM) based on the same model. In this brief, the algorithm performance of the Kalman-filter-based method is compared to that of the RPEM using a numerical example. Another example shows that the success rate of the RPEM is increased from 70% to 100%, when the proposed algorithm is used for generation of initial estimates for the RPEM. The Kalman-filter-based algorithm is also used for finding initial parameters for the RPEM when applied to live data from a laboratory process - a system of cascaded tanks. Based on the experimental results, this brief discusses advantages and disadvantages of different algorithms and differentiation schemes.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:16 ,  Issue: 4 )