By Topic

Integration of Spatial–Spectral Information for Resolution Enhancement in Hyperspectral Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanfeng Gu ; Harbin Inst. of Technol., Harbin ; Ye Zhang ; Junping Zhang

In this paper, a new algorithm is proposed for resolution enhancement in hyperspectral images (HSIs). The key techniques are included: spectral unmixing and superresolution mapping, by which spatial and spectral information of HSIs is substantially fused. The proposed algorithm first represents each pixel in scene as a linear combination of landcover spectra and noise. Then, a fully constrained least squares algorithm is used to obtain the proportion of each landcover in each pixel, i.e., abundance, subjecting to two constraints: nonnegativity and sum-to-one. After that, superresolution mapping is performed on high-resolution grids according to spectral unmixing abundances of each landcover and following spatial correlation of clutters. Thus, by reasonably integrating spatial and spectral information of landcovers in HSIs, the proposed algorithm realizes resolution enhancement of the HSIs based on a back-propagation neural network. The proposed algorithm is independent from the a priori information associated with original HSIs, i.e., a main merit of the algorithm. In order to evaluate the performance of the new algorithm, numerical experiments are conducted on both simulated images and real HSIs collected by the Airborne Visible/Infrared Imaging Spectrometer. The proposed algorithm is compared with the traditional method in the experiments. The experimental results prove that the proposed algorithm effectively enhances the resolution of HSIs and indicate its applicability.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 5 )